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Pnysics motivations

One of the fundamental questions LHC could address:;
Why do we have massive bosons?
What isthe source of the EW symmetry breaking?

There must be some new physics leadingto EWSB. So, we
can search for

direct emdence— new particles such asthe Higgs, technicolor , €c,
have experimenta signatures with diboson find states, or

Indirect evidence — observe deviations of vector boson sdf-interactions
from the S\I.

At the TeV energy scale there must be one or the other
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Experimental advantages

W’s & Z’sprovide experimentally clean signals
|dentification of W and Z iswell established

Observation of aZ peak will be one of the early tests of a
properly working detector.

Mass provides avauable constraint and
They areagood source of high pT leptons
Efficient observation with low background

Trigger at low momentum threshold.
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Standard mode! diboson production in
hadron colliders

s-channel t-channel

S-channel depends on trilinear gauge coupling (TGC)
Charged couplings (WWZ/ ) are dlowed in the SM
Neutral couplings (VVV whereV=Z or ) aredisallowed
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Production cross-sections

Diboson mode Conditions Tevatron LHC LHC
\/E = 1.96 TeV -\/5: 14 Tel” -\/5: 14 Tel”
o(pb) NLO o(pb) NLO c(pb) LO

wtw- 7’s on mass shell 12.44+ 0.3 111.6+5.6 70.7147.1
w70 Z and 7 on mass shell, no Z /7y 3.7+ 0.3 47.843.3 27.1242.7
7070 Z’s on mass shell, no Z/yx 1.43+ 0.1 14.84+1.3 11.13+1.1*
Wty EY > 20 GeV 193+ 1.4 119.1+6.0 60.6+ 6.1
Z0y E} >20GeV, AR((,y) > 0.7 4744 0.22 69.0+3.5 56.0+5.6

Productionrate at LHC will be at least 100x higher at
Tevatron. 10x higher cross-section and 10-100x higher
uminosity (10% — 10%4).

Probes much higher energy region, so sensitive to new
DhySICS.
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‘ Examples of new physics with dibosons
Higgs, Z', G, anomaous TGCs 1 | w
WZ _ > {

SUSY, technicolor, W', anomdous TGCs

W

anomalous TGCs N\

.

anomaous TGCs "

/7 ;

Higgs, heawy lepton pair, anomalous TGCs S
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Dibosons are discovery channels

Signal significance
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\Techni color model — composite higgs

Reconstructed invariant mass for pr—WZ-lvll channel.
Solid line is signal. Filled area is background.
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Strongly-coupled vector boson system

No light Higgs boson? Study Longitudinal gauge boson scattering in high energy

regime (the L-component which provides mass to these bosons).
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High p, fake leptons

Understanding the fake high pT leptons is the key for new physics discovery in
the TeV energy scale.

Fakes per Z—»uu Event as P, Cut

E10TE For pT > 500 GeV fake
} -—
@ \ muonrate~ 10°
:‘% 10-2 ; ...............................................................
10-3 g_ ........................................................................
10 - —— Muonboy
— Muonboy with Matching
_ — Moore
10 | —— MuID Stand-Alone
— | =— MulD Combined
10.5 | | | | | L1 1 | 1

104

January 2008 Direct andindirect seercheswith dibosons— Alan Wilson 10



ATLAS diboson anaysis

WW- = &ve v 2 isolated leptons with P; > 25 GeV, opposite charges, AR(#)>0.2,
113.3 ob Missing transverse energy > 30 GeV, | M,-Mee/pup| > 30 GeV
Oww = 113.3P N,.. (E;>30 GeV) < 2, | Vector-sum (lep, MET)| <100GeV
WZ=>ov it 3 isolated leptons with P .., > 25 GeV, AR(#)>0.2
9.4 ob vertex cut for each lepton pair: AZ<lmm, AA<0.1mm
Owsz = 27-4P MET > 30 GeV, | M,-Mee/pu| < 10 GeV, 40GeV < M, < 250GeV
Ow.z = 18.4 pb Ni. (E;>30 GeV) < 2, | Vector-sum (lep, MET)| <100GeV
77 = ¢ ¢ 4 isolated leptons with at least one P; > 20 GeV
b Separation between each lepton pair AR(#)>0.2

Gzz=18.8p All the lepton come from the same vertex, no hadron jets
77 = ¢ vV 2 lepton with P; > 20 GeV, and | M,-M, | <10 GeV, P;(#) > 100 GeV

18.8 ob veto the 3™ lepton, MET > 50 GeV, N, (E;>30 GeV) =0,
Ozz=1.SP Ad(Z, MET) > 35 deg, | MET-PT(Z)|/PT(Z) < 0.35
W v > A, Y 1 isolated lepton with PT > 20 GeV

N b 1 isolated photon with ET > 20 GeV
le\-’}’_(51'8+38'8) 1.4p MET > 30 GeV, 40GeV < M; < 250Ge, Jet veto, AR(¢y)>0.7
7 y = é’+g-q{ 2 isolated leptons with P; > 20 GeV, opposite charges, AR(#)>0.2,
N b | M,-Mee/ppL| < 10 GeV, one photon with PT>20GeV, Jet veto
Oppy = 20.2%1.4p AR(¢y)>0.7, | M,-Meey/ppy| > 30 GeV
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‘ Signal and background contamination for
WW euvv

Type MC Process Niglociea BKg. %
Signal WW —evuv 420.0
W’'s decay to tau’s WW — evtv 6.6
WW — uvtv 9.0
WW — vtV 0.4
Background Total 80.8 100.0%
ft 36.7 45.4%
WtZ — {vid 12.1 15.0%
W=Z— (vt 9.26 11.5%

Zup)+JET 4.58 5.7%
Z(tt)+JET 10.95 13.6%
Drell-Yan — #¢ 5.12 6.3%
Wy — Ly 1.75 2.2%
77 — PPee 0.34 0.4%
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\ Backgroundsto WZ

Mg or backgrounds,

pp tt (17.4% of background)
Pair of leptonsfdl in Z masswindow
Jet produces lepton signd

pp Ztets (15.5%)
Fakemissing E;
Jet producesthird lepton signal

pp Z/ ee, mm (12.4%)
Fekemissing E; and third lepton

pp ZZ 4leptons (47.8%)
Losealepton

™ o< = m

] e NN

Q) —1—\ CI’
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Diboson sengitivity with 1 fiot int. lum.

Diboson mode  Signal Back ground SWVB  Anayss
W-W- evev 78.0+£1.6 35.4+3.6 13 BDT ( =20.5%)
WW- gvuv 90.3+1.6 20.2+2.8 20  BDT ( =15.5%)
WW- evuv 419.9+35 80.8+6.0 47  BDT ( =39.6%)
WW- [Pvlv 104.4+2.4 19.3+24 24 Sraght cuts
WZ v 152.6+1.7 16.1+2.5 38 BDT ( =65.1%)
53.4+1.6 6.7£1.2 20  Straght cuts
ZZ 4 16.5+0.14 1.90+0.2 76  Straght cuts
ZZ v 10.2+0.2 5.2£2.6 45  Straght cuts
Wy ey 2462+ 61 1134+34 73 BDT( =67%
Wy uHvy 385577 1783+42 91 BDT( =67%
Zy ¢€ey 37417 144+13 31 BDT( =67%
Zy HHy 827+25 359+19 44 BDT ( =67%
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Systematic Uncertainties

Signal systematics ~9%
Luminosity measurement 6.5%
PDF assumption 3%
NLO scaling 5%
Particle|D 3%
Background systematics ~18%
( In addition to the above)
MC sample statistics  15% (may drop to 10%)
Calibration on lepton, jet energy 5%

The systematic errors start to dominate the cross-
section measurement uncertainties after 5-10flo™.
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Sear ch for new physicsthrough anomalous TGCs

Model independent effective Lagrangian with anomalous couplings

Lownd Gy =19V (WF WV —WTV W )
+i WWV +i( /MAHAWT WV
wheeV =27, .

In the standard model gV= ,=1and 0.

The godl is to measure these values, usually expressed as the five anomalous
parameters 94 5, , ,and

In many cases the terms have an § dependence which means the higher center-of-
mass energies at the LHC greatly enhance our sensitivity to anomalous couplings

Complementary studies through different diboson channels

Production - term g,% term , term
WWw grow as § grow as §* grow as §
Wz grow as §* grow as § grow as §
Wy grow as §* grow as §
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Probing anomalous TGCsIn ATLAS

To probe the anomal ous couplings we need a model of the
kinematic distributions for various couplings. To dothiswe
use
NLO generators
MC@NLO produces eventsthat are fully smulatedin ATLAS
BHO MC is used to generate events with anomaous couplings
Reweighting
Using kinematic distributions from BHO we reweight the fully smulated

MC@NLO events to produce expected distributions for arange of
mqndws ch.”jlngs. § ATLAS (0.1 fh™) ¢ MCDum

Boosted decision tree selection e

A multivariate event selection method that is very
effective, stable, and relativaly transparent.

— Signal(ww—evuy
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‘ Anomalous spectra and reweghting ratio

Number of W'Z— vlil (I=eu) events as pT[Z} Fraction change from SM as pT[Z] for W*Z
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M- (WZ) spectrum sensitive to WWZ couplings

30fb?
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Binned likeihood comparing mock SM observationsto aSM praofileand
two reweighted anomalous profiles

M. (WZ) was found to be the maost sensitive kinematics quanitity (P;(2),
M(ll), and others are dso useful, but not as sensitive).

Using 10 bins from 0-500GeV and one overflow bin.
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TGC sengitivity usng M(WZ)
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<06
006< gZ<01
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Tevatron results

012 < Ak- <029 2TeV DO with 1.0 fb‘l
-0.17 < A- < 0.21

-0.82 < Ak- < 1.27 2 TeV CDF with 1.9 fb‘l
-0.13 < A- < 0.14
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TGC sengitivity usng M(WZ)
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M- (WW) sensitiveto WWZ & WW  couplings
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Binned likelihood comparing mock SM observations to a SM
profile and two reweighted anomal ous profiles

Using 10 bins from 0-500GeV and one overflow bin.

In addition, the three decay channels, ee, e ,and , are
binned separately for atotal of 33 bins.
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‘ Systematic Error Effect on TGCs
2D Limits, =2TeV, using P;(Z)

Limit for Ax,=Ag’ and A, where A=2TeV Limit for Ax,=Ag’ and A, where A=2TeV
(<N : n n

02f

N =
- L
0.2
0.4 0l
0 O 0 :
01k -
B 01

02f

02

No systematic errors 9.2% signal, 18.3% background
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Altas TGC sengitivity for the first 10 fio?

95% CL intervals for anomalous charged TGCs

Diboson, Az AK7 Agt AKy Ay

(fit spectra)

WW. (M7) [-0.040. 0.038] [-0.035.0.073] [-0.149,0.309] [-0.088.0.089] [-0.074,0.165]
WZ. (Mr) [-0.015, 0.013] [-0.095. 0.222] [-0.011, 0.035]

Wiev)y. (Pr(y)) [-0.34. 0.12] [-0.07, 0.03]
W(uv)y. (Pr(y)) [-0.30. 0.09] [-0.05, 0.02]

95% CL intervals for anomalous neutral TGCs
fZ fZ fy 13
77 — (000
[-0.010, 0.010] [-0.010,0.010] [-0.012,0.012] [-0.013,0.012]
Z7 — vy
[-0.012,0.012] [-0.012,0.012] [-0.014,0.014] [-0.015,0.014]

Combined
[-0.009, 0.009] [-0.009, 0.009] [-0.010,0.010] [-0.011,0.010]
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Concluson

D1bosons are key to understanding the EW symmetry
oreaking mechanism.

Direct and Indirect searches for new physics can be
nerformed with diboson fina states.

ATLAS detector can establish the SM diboson signal
with the first 100 pb?, which serves as a stepping
stone to discovering new physics.

With 30 fio't the anomal ous couplings will be probed
with at least an order of magnitude better sengitivity
over Tevatron and LEP.
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Additiond dides
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TGC limitsfrom LEP

Charged TGC limits from WW
—0.051 < Agf < +0.034

—0.105 < Ak, < +0.069
—0.059 < A, < 40.026.

The TGC parameters are related by A, = A, and Aky = Ag¥ — Ak, tan” Oy

Neutral TGC limitsfrom ZZ
-0.30<f,2<0.30 -0.34<12<0.38

-0.1/<f,y<019-0.32<1.y<0.36

January 2008 Direct andindirect seercheswith dibosons— Alan Wilson 27



Boosted decision trees (BDT)

Solit sample in haf, onefor training, onefor test.
Sdect asat of variadles (p;, isolation, inv. mass,
...)tocut on.

Build adecision tree by choosing the best variddle :
to cut on, put eventsin signa and background Ar37
leaves, and continue splitting each leaf until all : 202 GeV

leaves have too few events or are pure
signal/background. _ o

Boosting: give misclassified events higher weight <500 om
and produce anew tree.

Radius?

S
Total 200 or moretrees. Each tree classifies 71 an
events as signd (+1) or background (-1). The
result is a score for each event which isthe sum One decision tree

of the 1 from dl thetrees.
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2D anomalous TGC sengitivity using M (WW)

95% confidence contoursfor 0.1, 1, 10, o

_ T R — | —0.1fb"
and 30 fb! integrated luminaosity >o / orom!
0.1F _10.0fb:
Right: HISZ assumption (2 parameters) —, N @, 300fb:) :
Bottom: “Standard” assumption, AN 7
Z param.= param. (3 parameters) 0% P S i - S
\'015' I I'O-{ I I-I':'-C’&LJI I IUI I I'i:'.l)5l = If.'l.‘lI = E.'l.15II I IO.EI I IJE)_ES
T e |01 1b" B S T — 0. 1t
< o2 i 10" - \ 1.0 fb”
ol Vd s —10.0 b 050 \ ﬁ —10.0 b
- — 1 C —30.01fb"
of ( €0 Sh—— of \-
: \ N~ / - N AN ‘:
0N / . -0.5F \\ .
-0.2f ___.....--"""/ - C \ ‘/ E
e e e S B - E- S ¥ e e
Ak, =A Ap=Ay
Jnuery 2008 Direct andindirect ssercheswith dibosons— AlenWilson



Detalls can befound inthe
ATLASDiboson CSC note
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Diboson Physics Studies With the ATLAS Detector
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Abstract

We present studies of the Standard Model (SM) diboson (77—, wz0 ziz0 ¥,
and Z%) productions in pp collisions at /T = 14 TeV. through their leptonic decay channels
with electron, muon and photon final states. Our studies use the ATLAS CSC (Computer-
System-Commissioning) datasets, which include the trigger information and the detector
calibration and alignment corrections. We aim to establish the SM diboson detection sensi-
tivities with the ATLAS experiment in early LHC physics runs (for 0.1 to 1 fb~1 integrated
luminesities). We have included large fully simulated background events in our studies to
understand the sources of background for diboson detection. We estimate the cross section
measurements uncertainties (both statistic and systematic) as a function of integrated lumi-
nosity (from 0.1 to 30 fb_l) and to establish the ATLAS experiment sensitivities to anoma-
lous triple gauge boson couplings. This note shows that the SM 77—, mEze, Wiy, Zc'y
signals can be established with the signal statistical sensitivity better than 5o for the first 0.1
b~ integrated luminosity, and the Z°2% signals can be established with 1.0 fb~! integrated
luminesity with ATLAS detector. The anomalous triple gauge boson coupling sensitivities
can be significantly improved even with 0.1 fo~! data over the results from Tevatron based
on 1! data.



